

The Computational Science Environment (CSE)

by Jose C. Renteria, Richard C. Angelini, John M. Vines,

Kelly T. Kirk, and Eric R. Mark

ARL-TR-4911 August 2009

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

DESTRUCTION NOTICE—For classified documents, follow the procedures in DOD 5220.22-M,
National Industrial Security Program Operating Manual, Chapter 5, Section 7, or DOD 5200.1-R,
Information Security Program Regulation, C6.7. For unclassified, limited documents, destroy by any
method that will prevent disclosure of contents or reconstruction of the document.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5067

ARL-TR-4911 August 2009

The Computational Science Environment (CSE)

Jose C. Renteria

Raytheon

Richard C. Angelini, John M. Vines, Kelly T. Kirk,
and Eric R. Mark

Computational and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

 ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

August 2009
2. REPORT TYPE

Progress
3. DATES COVERED (From - To)

15 January 2008–31 December 2008
4. TITLE AND SUBTITLE

The Computational Science Environment (CSE)
5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Jose C. Renteria,* Richard C. Angelini, John M. Vines, Kelly T. Kirk, and
Eric R. Mark

5d. PROJECT NUMBER

9UE14C
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: RDRL-CIH-C
Aberdeen Proving Ground, MD 21005-5067

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TR-4911

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

Raytheon, 939-I Beards Hill Rd., PMB#191, Aberdeen, MD 21001

14. ABSTRACT

In order to provide a common platform for utilizing and developing data analysis and assessment applications in heterogeneous
high-performance computing (HPC) environments, the Classified Data Analysis and Assessment Center has developed the
computational science environment (CSE). CSE provides a stable suite of data analysis and assessment tools, applications, and
libraries that are common across most HPC environments and standard 64-bit Linux workstations. CSE also provides an
experimental, cutting-edge suite of developer tools that can enhance the data analysis and assessment process. And, most
importantly, CSE provides a common platform that enables the development of full-featured, portable HPC applications. This
report provides an overview of how CSE works and highlights some of the benefits of CSE.

15. SUBJECT TERMS

HPC, ICE, CSE, computational environment, high-performance computing, ParaView

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
OF ABSTRACT

UU

18. NUMBER
OF PAGES

44

19a. NAME OF RESPONSIBLE PERSON

Richard C. Angelini
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

410-278-6266
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

 iii

Contents

List of Figures vi

1. Introduction 1

2. Background 1

3. Initial CSE Module Setup 2

3.1 Machines With Modules ...3

3.2 Machines Without Modules ..3

4. CSE for the End User 3

4.1 End-User Examples ...5

4.1.1 Loading a Release CSE Application Module ..5

4.1.2 Loading a Release CSE Tools Module ..6

4.1.3 Loading a CSE Beta Application Module ...6

4.1.4 Loading a CSE Beta Tools Module ...7

4.2 End-User Benefits ...7

5. CSE for the Developer 8

5.1 Building CSE From Source ...8

5.2 Building a CSE Package From Source ..8

5.3 Building and Integrating a New CSE Package ..9

5.4 Developer Benefits ..9

6. CSE Principles 10

6.1 CSE Developer Principles ...10

6.2 CSE End-User Principles ..11

6.3 CSE Testing Principles ..11

6.4 CSE Distribution Principles ..11

7. Notes on Building CSE 11

7.1 CSE Build Flags ..11

 iv

7.2 Building on Specific Platforms ...12

7.2.1 Redhat Enterprise Workstation Build (x86_64) ..12

7.2.2 MJM and JVN Build (x86_64-SuSE-ib & x86_64-SuSE-ib)13

7.2.3 Humvee and Sketch Build (x86_64-SuSE-ib & x86_64-RHEL-ib)13

7.3 CSE Distribution ...14

7.3.1 Tarball Method ..14

7.3.2 Rsync Method ..15

7.4 Building ParaView From CVS Repository for Beta Distribution15

7.4.1 Updating and Preparing Required Packages for Upload to the Local SVN
Repository ...15

7.4.2 Compiling Paraview Within the CSE Environment ..17

8. Notes on Testing CSE 18

8.1 General Testing Information for Applications/Tools ..18

8.1.1 pyMPI: MJM, JVN, Humvee, and Sketch ..18

8.1.2 VTK: MJM, JVN, Humvee, and Sketch ...19

8.1.3 ParaView: MJM, JVN, and Humvee ..19

8.1.4 ParaView: Sketch ...20

8.2 General Testing Errors ..21

8.2.1 TK Testing Error and Workaround ...21

8.2.2 VTK Testing Error and Workaround ..21

8.2.3 ParaView Testing Error and Workaround ...21

9. Notes on Distributing CSE 22

9.1 Installing Software on the rdist Master System (patrick) ..22

9.2 Rdist from patrick ..22

9.2.1 Release Distribution Only ...23

9.2.2 Release and Beta Distribution ...23

9.2.3 Rdist Packages Currently Available ..23

10. Notes on Extending CSE 23

10.1 Integrating a Personal Package to CSE ...23

10.2 Creating a CSE Module File ...24

10.3 Integration Example—IceSpy ...24

10.3.1 IceSpy Description ..24

10.3.2 Pre-CSE Development and Execution Challenges ..24

10.3.3 Using the CSE Build Process for IceSpy ..25

 v

10.3.4 Adding IceSpy to the Main SConstruct ...27

10.3.5 Running and Testing IceSpy ...27

10.4 Integrating a New CSE Package ...28

10.4.1 Create CSE Source and Layout Structure ...28

10.4.2 Generate Configuration Files for Scons ..28

10.4.3 Patching a CSE Package ..30

11. CSE Helpful References 31

11.1 Subversion Repository ..31

11.1.1 Getting CSE Source ...31

11.1.2 Export a Clean Directory Tree ..31

11.1.3 Updating CSE Source ..31

11.2 Module Commands ...32

11.3 LSF Commands ...33

Bibliography 34

Distribution List 35

 vi

List of Figures

Figure 1. The CSE layout. (A) An overview of the complete CSE layout structure with an
emphasis on the module layout. (B) The package layout, the location of the bin, lib, and
other directories associated with each CSE package. ..4

Figure 2. The CSE source package layout. (A) An overview of the general CSE package
layout directory structure. (B) The directory layout corresponding to packages that have
multiple versions. ...29

 1

1. Introduction

Computational environments or frameworks are designed with the intent of simplifying
processes associated with application/tool activation and software development. A good
computational environment will allow users and developers to focus on research requirements
instead of spending cycles on secondary (yet important) components not directly related to their
research (e.g., portability and visualization). In this work, the Classified Data Analysis and
Assessment Center introduces the computational science environment (CSE), a new module
(modules 91, modules 96)-based release structure for the software platform once known as the
interdisciplinary computing environment (ICE).

CSE consists of two components that can enhance the data analysis and assessment process:

1. Release CSE: A stable suite of data analysis and assessment tools, applications, and
libraries.

2. Beta CSE: An experimental, cutting-edge suite of developer tools.

CSE includes the extensible data model and format (XDMF) (Xdmf02), a common data hub
where high-performance computing (HPC) codes and tools can efficiently exchange data values
and meaning. CSE also consists of many tools like Python, VTK, and ParaView that can assist
with day-to-day visualization requirements. In addition, CSE serves as a common platform that
enables the development of full-featured, portable HPC applications. CSE is available on most
classified and unclassified Major Shared Resource Center (MSRC) HPC environments and is
portable to most 64-bit Linux workstations.

This report outlines how an end user and developer can obtain and leverage CSE on a
workstation and in HPC environments. This report can also be viewed as a collection of
developer notes that describe the CSE general framework and outlines how to build, test,
distribute, and utilize CSE tools and applications.

2. Background

The concept of a centralized build mechanism was initially implemented to automate building of
ICE on all U.S. Army Research Laboratory (ARL)-MSRC Systems. While developing the ICE
build system, many different software building tools were evaluated. Scons was selected based

Scons is an open source cross-platform software build tool distributed under the MIT license, scons.org.

 2

on its powerful Python scripting language and used the Blender† Scons implementation as the
basis for the framework. The Scons toolkit was able to build all the external packages required
for Blender on a variety of platforms, which reflected the requirements for ICE applications. In
addition, certain system-level applications (such as Python) required for Scons to function were
not consistent across computing platforms, so a bootstrap mechanism was developed to identify,
compile, and install the required toolkits prior to installing Scons.

However, the initial ICE implementation did not provide a mechanism to easily modify the
user’s environment and resolve dependencies required to properly utilize the software. A run
script was used in ICE to set environment variables and run the applications; however, this script
did not easily accommodate multiple package versions or resolve version conflicts. Software
updates were released on a regular schedule, and these updates required a full rebuild of the
entire software structure to ensure that all changes were maintained across the suite of tools.
Older versions of the software were accessible through additional scripts; however, because of
ongoing, difficult-to-resolve software environment issues and library dependency errors, this
methodology eventually proved to be difficult for both the users and software developers.

Once it was determined that the entire development and release methodology needed to be
reevaluated, a primary requirement was to be able to easily and consistently control the
application environment to ensure that the proper tools were available. It was determined that
the easiest and most reliable solution was to take advantage of a solution known as modules.‡
From an end-user standpoint, modules provides a foolproof method for establishing a valid user
environment and resolves package dependencies, both of which were identified as significant
issues in the initial ICE release. Modules also allow for new or updated software packages to be
inserted into the software release structure without disturbing existing applications or requiring a
complete rebuild of the software tree.

3. Initial CSE Module Setup

CSE provides a flexible method for enabling applications, tools, and software across HPC
environments. CSE simplifies the process associated with activating a particular application by
leveraging modules (modules91, modules96). This section will outline how to obtain and/or
initialize CSE modules.

Python is an interpreted, interactive, object-oriented programming language under an Open Source Initiative-approved

license, python.org.
†Blender is the free, open source three-dimensional content creation suite available for all major operating systems under the

GNU General Public License, blender.org.
‡The environment modules package provides for an easy dynamic modification of a user’s environment via module files.

Released under the GNU General Public License, modules.sourceforge.net.

 3

3.1 Machines With Modules

On the existing HPC systems (MJM, Humvee, JVN, Sketch, and Stryker) where modules are
automatically integrated into the environment, users only need to know that the CSE modules
exist and the procedure required to load the CSE main module (cseinit). To load CSE on the
aforementioned HPC systems, type:

> module load cseinit

3.2 Machines Without Modules

On non-HPC systems, such as 64-bit Linux workstations, the modules software is included with
the CSE distribution. The CSE distribution is available using rdist for RHEL4 and RHEL5
Linux workstations from a U.S. Army Research Laboratory server. For information on how to
gain access to the CSE software, please contact the vis@arl.army.mil.

Once CSE is installed, modules must be initialized using one of the following methods:

1. Initialize CSE modules by adding the following to your .cshrc:

if (-e /usr/cta/CSE/modules/init/tcsh)then

source /usr/cta/CSE/modules/init/tcsh

module use /usr/cta/CSE/modules/COTS

endif

2. Initialize modules from the command line by executing the following commands:

source /usr/cta/CSE/modules/init/tcsh

module use /usr/cta/CSE/modules/COTS

4. CSE for the End User

The central idea of CSE is to simplify the process associated with establishing the proper
environment to execute a particular application. The end user is not required to establish
environment variables or modify library paths to get common applications to work properly.
Although the underlying CSE tree structure in figure 1 seems complex, the end user will interact
with CSE via a simple series of module commands.

 4

Figure 1. The CSE layout. (A) An overview of the complete CSE layout structure with an emphasis on the
module layout. (B) The package layout, the location of the bin, lib, and other directories associated with
each CSE package.

Modules are divided into two main components (release and beta), with two subcategories
(applications and tools):

1. CSE release modules provide packages that have been formally released and tested. Each
released package is considered to be stable and most likely will not change.

 5

 a. Release applications:

- paraview - visit

 b. Release tools:

- cmake - mesa - qt -pryo

- tcltk - pympi - vtk -openal

- scons - hdf5 - pyqt -freealut

- libxml2 - python - sip -xsound

- svn - lyx - numpy -pyro

2. CSE beta modules provide packages that have not been formally released or tested. In
most cases, these packages are the latest development version of the package. The
packages are not guaranteed to be stable and will most likely change due to ongoing
development updates.

 a. Beta applications:

- paraview_beta

 b. Beta tools:

- vtk_beta - xdmf_beta - xframework_beta

-icespy_beta -iceutil_beta - CUDA_toolkit

Note that loading multiple modules (release, beta, or both) can raise conflicts when dependencies
point to different versions of the same package, e.g., qt-4.2.3 and qt-4.3.3. If a conflict arises, it
is the user’s responsibility to satisfy the module requirements by unloading and loading the
correct sequence of modules. However, in some cases, modules cannot coexist. To illustrate
how one can load different CSE release and beta packages, several examples are provided in the
following sections.

4.1 End-User Examples

4.1.1 Loading a Release CSE Application Module

To view and load a CSE release application module:

1. Load CSE module:

> module load cseinit

2. List the modules:

> module avail

 6

3. Load desired module:

> module load cse/paraview/latest

Loading the main CSE module (cseinit) will make the release application list (ParaView,
Visit, OpenMPI ...) available to load. CSE will commonly provide several versions of the same
package; by default, the latest version of a particular package is cse/package/latest. Note the
cse tools and cse beta modules will be available to load.

4.1.2 Loading a Release CSE Tools Module

To view and load a CSE release tools module:

1. Load CSE module:

> module load cseinit

2. Load CSE tools module:

> module load cse-tools

3. List the modules:

> module avail

4. Load desired module:

> module load cse/python/latest

Loading the CSE tools module (cse-tools) will make the release tool list (CMake,
Python, TclTk…) available to load.

4.1.3 Loading a CSE Beta Application Module

To view and load a CSE beta application module:

1. Load CSE module:

> module load cse

2. Load CSE beta applications module:

> module load cse-beta

3. List the modules:

> module avail

4. Load desired module:

> module load cse/paraview_beta/04.22.08

 7

Loading the CSE beta module (cse-beta) will provide a list of CSE beta applications
available to load. The beta applications are not fully tested but may provide the most current
features available. Note the cse-tools-beta will be available to load.

4.1.4 Loading a CSE Beta Tools Module

To view and load a CSE beta tools module:

1. Load CSE module:

> module load cseinit

2. Load CSE beta applications module:

> module load cse-beta

3. Load CSE beta tools module:

> module load cse-tools-beta

4. List the modules:

> module avail

5. Load desired module:

> module load cse/vtk_beta/04.22.08

Loading the CSE beta tools module (cse-tools-beta) will provide a list of CSE beta tools
available to load.

4.2 End-User Benefits

CSE has several end-user advantages, including:

1. Due to the nature of modules, the end user is no longer responsible for setting environment
variables or library paths necessary for proper program execution.

2. CSE applications are loaded exactly the same on all HPC platforms and workstations as
illustrated in the previous examples.

3. CSE uses a larger test suite to ensure better stability of release tools and applications.

4. CSE provides a cutting-edge suite of applications and tools.

 8

5. CSE for the Developer

Development of full-featured, portable HPC applications is considered in the CSE module
philosophy by incorporating common developer principles. For example, a loaded CSE module
sets the CSE_PKGNAME_HOME environment variable that can be used to set compiler include
(-I/CSE_PKGNAME_HOME/include) and library (-L/CSE_PKGNAME_HOME/lib) flags.
This allows developers to easily build or rebuild codes without having to modify the compiler
flags when moving from one HPC environment to another. Therefore, an application/tool
developed against CSE will compile and function on all supported CSE platforms. Developers
can also build against different versions of a particular package (e.g., Python-2.4 vs. Python-2.5)
via a module switch command. In the following sections, three methods of building and
leveraging CSE are discussed.

5.1 Building CSE From Source

The first method is a complete CSE build. CSE has been designed to build right out of the box
with minimal effort. For example, to build CSE on a x86_64 Redhat Enterprise workstation:

1. Get latest version of CSE from the source repository (see section 10.1). It is assumed that a
working copy of CSE has been exported to the CSE_build directory. The name of the
directory CSE_build is arbitrary.

2. Go to the CSE_build directory:

> cd CSE_build

3. Start the CSE build:

> ./bootstrap -a # (build with test)

or

> ./bootstrap -a -nt # (build without test)

After the build is complete, instructions on how to access your personal CSE will be output to
the screen.

5.2 Building a CSE Package From Source

CSE is also designed to build independent packages. This feature allows developers to build
only the packages that are desired and provides the platform to customize existing CSE
packages. To further assist the developer, the CSE build provides feedback if dependencies are
missing. For example, consider the following steps to build the pyQt CSE package on a x86_64
Redhat Enterprise workstation:

 9

1. Get latest version of CSE from the source repository (see section 10.1).

2. Go to the CSE_build directory:

> cd CSE_build

3. Start the CSE build:

> ./bootstrap -a pyqt # (build with test)

or

> ./bootstrap -a -nt pyqt # (build without test)

In this instance, the developer forgot or is not aware of the Qt dependency on pyQt. The CSE
build will terminate and provide feedback indicating that pyQt cannot build due to missing Qt.

4. Start the CSE build again:

> ./bootstrap -a qt pyqt # (build with test)

or

> ./bootstrap -a -nt qt pyqt # (build without test)

In this example, two CSE packages will build. First, Qt will be configured and compiled, then
pyQt will be configured and compiled. After the build is complete, instructions on how to access
your personal CSE will be displayed to the screen.

5.3 Building and Integrating a New CSE Package

The third method is building a new CSE package. In this case, a developer can:

1. Obtain CSE as outlined in section 2 or build CSE from source as described in section 4.1,
then create a module that interfaces a personal package with CSE.

2. Build CSE from source as described in section 2, then integrate a new CSE package.

To successfully integrate a new CSE package requires a firm understanding of the internal CSE
build philosophy. Section 10, “Notes on Extending CSE,” is dedicated to this topic.

5.4 Developer Benefits

CSE offers several developer advantages, including:

1. Applications or tools developed against CSE will compile and function on all supported
CSE platforms.

2. CSE modules set usable environment variables that can be used to set compiler flags.

 10

3. Building or rebuilding code against different package versions is easier because it is not
necessary to modify build definitions.

4. Custom modules can be created to interface with CSE.

6. CSE Principles

The CSE philosophy is derived from a set of principles that outline the build (developer),
utilization (end user), testing, and distribution requirements.

6.1 CSE Developer Principles

The developer principles can be summarized as follows:

1. CSE package build and install directories must be unique. (Note: The only exception to
this rule is TclTk. Tcl and Tk are built in separate directories but are installed in the same
directory.)

2. Each CSE module generated by a CSE build is derived from a CSE package. This implies
that a corresponding module file must be generated when a CSE package is built.

3. A CSE-generated module must set the CSE_PACKAGE_HOME and
CSE_PACKAGE_VERSION environment variables.

4. To build a CSE package, all dependent modules must exist and be loaded.

5. The build and module layout described in developer principles 1 and 2 must be consistent
with figure 1.

6. All modules and package directory names must use a lowercase naming scheme. Beta
package modules must use an underscore, followed by the tag “beta” (_beta).

7. Only stable packages can be placed in the CSE release module structure.

8. All dependencies of a released CSE module must be released CSE modules or system-
offered modules. Therefore, a module in the “release” area cannot have a dependency in
the “beta” area.

9. The CSE release tool module’s structure can only contain modules that are used by CSE
release applications or critical tools (popular user tools like Python). Tool modules that do
not meet this criteria must be placed in the CSE beta module structure.

10. If a CSE package is dependent on a beta CSE module, then that package must also be
classified as a beta CSE module. (See rule no. 8.)

 11

11. CSE will only support two versions of beta packages unless specifically request by a user.
This implies that if a third version of a CSE beta package is available, then the oldest of
these three CSE beta packages will be removed unless otherwise requested.

6.2 CSE End-User Principles

The end-user principals can be summarized as follows:

1. When a CSE module is loaded, all dependent modules must be automatically loaded.

2. A CSE module load or unload should not adversely affect standard module functionality.

3. A CSE module must detect conflicts with other CSE-loaded modules.

6.3 CSE Testing Principles

The CSE testing methodology is based on a three-phase approach as follows:

1. Test each package after initial build.

2. Test all packages after complete CSE build/install.

3. Run critical test (commonly used tools and features) frequently on installed CSE packages.

6.4 CSE Distribution Principles

1. In order to acquire local optimizations and performance enhancements (compilers,
hardware-specific MPI installations, etc.), CSE will be built and released on each HPC
system.

2. The 64-bit Linux workstation releases will be built on a “clean” system to ensure
portability.

3. RHEL4 and RHEL5 distributions will be available for desktop workstations from an rdist
master (patrick [U] and slurpee [C]). (See section 6.3 for further details.)

7. Notes on Building CSE

7.1 CSE Build Flags

SYNOPSIS ./bootstrap [-a] [-nt | -notest] [-i | -install |

install=1] [-f | -force | force=1][diff=1][build_mpi=1]

[build_xsound=1] [build_icespy=1] [package-name ...]

 12

DESCRIPTION ./bootstrap builds basic tools required to build CSE and builds CSE
packages. If no flags are given, then only the basic tools required to build CSE are generated.
(Note: No CSE packages are generated.)

OPTIONS The following options are recognized by ./bootstrap:

• -nt, -notest Build CSE without running test.

• -a Build all standard CSE packages. If no package names are given, then all standard CSE
package. (Note: Standard packages do not include OpenMPI, XSound, or IceSpy.)

• build_mpi=1 Build CSE version of OpenMPI. (Note: If this flag is not used, then an
openmpi module must be loaded prior to running bootstrap.)

• build_mysql=1 Build a MySQL database server and a Python module (“MySQLdb”) for
use with MySQL.

• build_xsound=1 Build XSound. (Note: XSound adds sonification functionality to
XFrameWork and is mostly intended for workstations and/or visualization systems that run
demos.)

• build_icespy=1 Build IceSpy. (Note: IceSpy is not fully integrated and is only intended to
build on MJM, JVN, Humvee, and Sketch.)

• diff=1 Create patch for package(s). (See section 9.2.3.)

• -f, -force, force=1 Force a rebuild of package(s).

• -i, -install, install=1 Force a reinstallation of package(s).

7.2 Building on Specific Platforms

7.2.1 Redhat Enterprise Workstation Build (x86_64)

This section provides an overview on how to build CSE on a x86_64 Redhat Enterprise
Workstation. To build CSE, use the following steps:

1. Get latest version of CSE from the source repository (see section 10.1). It is assumed that a
working copy of CSE has been exported to the CSE_build directory. The name of the
directory CSE_build is arbitrary.

2. Go to the a CSE_build directory:

> cd CSE_build

3. Start CSE build:

> ./bootstrap -a build_mpi=1

 13

7.2.2 MJM and JVN Build (x86_64-SuSE-ib & x86_64-SuSE-ib)

This section provides an overview on how to build CSE on MJM and JVN remotely from a
Linux workstation. The following step will reference MJM; however, JVN can be substituted in
the following build steps:

1. On Linux, open HPC ticket:

> kinit username@ARL.HPC.MIL

2. ssh to a MJM login node:

> ssh -Y mjm-l7

(Note: SciVis members should build in /mnt/scivis, available only on login node mjm-l7 or jvn]-
l7.)

3. On mjm-l7, get latest version of CSE from the source repository (see section 10.1). It is
assumed that a working copy of CSE has been exported to the CSE_build directory. The
name of the directory CSE_build is arbitrary.

4. On mjm-l7, go to the a CSE_build directory:

> cd CSE_build

5. On mjm-l7, load the gcc and openmpi modules:

> module load ti06/gcc4.2 ti06/openmpi-1.2

6. On mjm-l7, start CSE build:

> ./bootstrap -a

7.2.3 Humvee and Sketch Build (x86_64-SuSE-ib & x86_64-RHEL-ib)

This section provides an overview on how to build CSE on Humvee and Sketch. The following
steps will reference Humvee; however, Sketch can be substituted in the following build steps:

1. On an unclassified machine, get the latest version of CSE from the source repository (see
section 10.1). It is assumed that a working copy of CSE has been exported to the
CSE_build directory. The name of the directory CSE_build is arbitrary.

2. Burn the CSE_build directory to a DVD. (Note: Follow proper procedures for introducing
unclassified media in a classified environment. These procedures are defined in the
enclave Operating Procedures document.)

3. Login to Humvee.

4. Copy the CSE_build directory from the DVD to Humvee.

 14

5. On Humvee, go to the a CSE_build directory:

> cd CSE_build

6. On Humvee, load the gcc and openmpi modules:

> module load ti06/gcc4.2 ti06/openmpi-1.2

7. On Humvee, start CSE build:

> ./bootstrap -a

Note that building CSE on Sketch requires some additional configuration as we cannot update
classified changes to the CSE repository. To build on Sketch, you may need to:

1. Modify bootstrap to recognize modules.

2. Modify patch for QT-4.2.3.

3. Modify conf file for hdf5-1.6.5.

4. Modify CMakeCache files for VTK, ParaView, and Xdmf.

Also note the ParaView-3.2.1 client on Sketch occasionally has issues terminating the openmpi
associated with pvserver. In these cases, it is required to kill (using bkill command, see section
10.3) the load-sharing facility (LSF) job corresponding to pvserver.

7.3 CSE Distribution

Once CSE has been built and tested, the CSE build needs to be bundled in preparation for
distribution. The update software can be distributed via a tar file or via the command “rsync.”
See the following two methods to bundle the CSE build.

7.3.1 Tarball Method

1. Go to the CSE root source directory CSE_build (directory where build was initiated):

> cd CSE_build

2. Go to the CSE architecture directory:

> cd build/ARCH

(Note: ARCH is the architecture that corresponds to the machine used to build CSE [e.g.,
x86_64-SuSE]).

3. Tar and gzip the CSE directory:

> tar -czf CSE.tar CSE/

4. Provide tar ball to system administrator or CSE installation manager for distribution.

 15

7.3.2 Rsync Method

1. Go to the CSE root source directory CSE_build (directory where build was initiated):

> cd CSE_build

2. Go to the CSE architecture directory:

> cd build/ARCH

(Note: ARCH is the architecture that corresponds to the machine used to build CSE [e.g.,
x86_64-SuSE]).

3. Rsync the CSE directory to the installation area:

> rsync -av CSE /usr/cta (RHEL4 installation)

or

> rsync -av CSE /rhel5/usr/cta (RHEL5 installation)

7.4 Building ParaView From CVS Repository for Beta Distribution

7.4.1 Updating and Preparing Required Packages for Upload to the Local SVN Repository

ParaView, ParaViewData, and VTKData are all required to be updated at the same time to
facilitate the build via the CSE “bootstrap” program. The tarballs that are created and uploaded
to the SVN repository on patrick must have the same download date in the filename. For
instance, the latest version of ParaView downloaded from Kitware’s CVS repository on 4 August
2008 would have the name “paraview-08.04.08.tar.gz”, and the VTKData and ParaViewData
files should also have the same “08.04.08” designation in the filename.

1. Update/download ParaView from CVS repository:

> cvs -d pserver:anoncvs@www.paraview.org:/cvsroot/ParaView3login

(respond with an empty password)

> cvs -d pserver:anoncvs@www.paraview.org:/cvsroot/ParaView3coParaView3

2. Update/download ParaView data from CVS repository (required for automated ParaView
testing):

> cvs -d :pserver:anoncvs@www.paraview.org/cvsroot/ParaView3coParaViewData

3. Update/download VTK test dataset:

> cvs -d :pserver:anonymous@public.kitware.com:/cvsroot/VTKDatalogin

(respond with password “vtk”)

 16

> cvs -d :pserver:anonymous@public.kitware.com/cvsroot/VTKDatacoVTKData

4. Bundle up new VTKData directory and push to CSE distribution area:

 > tar cvf vtkdata-MM.DD.YY.tar VTKData

> gzip vtkdata-MM.DD.YY.tar

> mv vtkdata-MM.DD.YY.tar.gz

{your-work-area}/Packages/Experimental/VTKData

Now, alert the SVN repository that you are going to be adding a new file:

> cd {your-work-area}/Packages/Experimental/VTKData

> svn add vtkdata-MM.DD.YY.tar.gz

Using your favorite editor, modify the “SConscript” file to read:

change the variable ``pkg_install_version'' to the MM.DD.YY

of new release

Finally, send the changes up to the SVN repository:

> svn commit

5. Bundle up new ParaViewData directory and push to CSE distribution area:

> tar cvf paraview-data-MM.DD.YY.tar ParaViewData

> gzip paraview-data-MM.DD.YY.tar

> mv paraview-data-MM.DD.YY.tar.gz

{your-work-area}/Packages/Experimental/ParaView

Now, alert the SVN repository that you are going to be adding a new file:

> cd {your-work-area}/Packages/Experimental/ParaView

> svn add paraview-data-MM.DD.YY.tar.gz

Using your favorite editor, modify the “SConscript” file to reflect:

change the variable ``pkg_install_version'' to the MM.DD.YY

of new release

(There are four different places within the “SConstript” file where this value must be reset.)

Send the changes up to the SVN repository:

> svn commit

 17

6. Bundle up new ParaView directory and push to CSE distribution area:

> tar cvf paraview-MM.DD.YY.tar ParaView3

> gzip paraview-MM.DD.YY.tar

> mv paraview-MM.DD.YY.tar.gz

{your-work-area}/Packages/Experimental/ParaView

Now, alert the SVN repository that you are going to be adding a new file:

> cd {your-work-area}/Packages/Experimental/ParaView

> svn add paraview-MM.DD.YY.tar.gz

Using your favorite editor, modify the “SConscript” file to reflect:

change the variable “pkg_install_version” to the MM.DD.YY of
new release

(Note: This is the same distribution directory that we used to release the ParaViewData
tarball, so this SConscript file should not need to be changed again.)

Send the changes up to the SVN repository:

> svn commit

7.4.2 Compiling Paraview Within the CSE Environment

1. Before compiling, you must have the proper environment established:

 On MJM/JVN:

> module purge

> module load ti06/gcc4.2 ti06/openmpi-1.2

 On Aspen Cluster:

> module purge

> module load openmpi/openmpi-gcc

 On Linux workstation:

> module purge

> module load cseinit cse-tools cse/openmpi/latest

2. Change directory to your the work area where you build (or intend to build) CSE and
download/update CSE if you have not already done so:

 18

> cd {your-work-area}

> svn up

3. Install the updated VTKData-beta directory:

> ./bootstrap -a -nt VTKData-beta

4. If you have previously built ParaView in this work area, you need to clean up some
directories in order to ensure a proper build:

> cd {your-build-area}/build

> rm -rf Paraview_beta-*

5. If you need to recompile for the same beta release, then you will also need to clean up this
directory:

> cd {your-build-area}/build/x86-64-RHEL/CSE/Beta

(X86-64-RHEL will be replaced with whichever architecture your system happens to be.)

> rm -rf paraview*-MM.DD.YY

6. If you want to rebuild the same beta release and you need to go back to the original tarball,
then this directory also needs to be removed:

> cd {your-build-area}/build/src

> rm -rf ParaView_beta-MM.DD.YY

7. Build the beta version of ParaView using the bootstrap program:

> cd {your-work-area}

> ./bootstrap -a -nt ParaView-beta

8. Notes on Testing CSE

8.1 General Testing Information for Applications/Tools

8.1.1 pyMPI: MJM, JVN, Humvee, and Sketch

This section provides a step-by-step procedure outlining how to test pyMPI on MJM, JVN,
Humvee, and Sketch while working from a Redhat Linux army.mil machine at Aberdeen
Proving Ground (APG), MD. The following steps will reference MJM; however, JVN, Humvee,
or Sketch can be substituted:

 19

1. Login to HPC machine.

2. ssh to a MJM login node:

> ssh -Y mjm-l1

3. On mjm-l1, request interactive compute nodes:

> bsub -Is -n 2 -x -a openmpi -m mjm -W 00:30 -q interactive

tcsh

4. On MJM compute node, load the CSE pympi module:

> module load cse/pympi/latest

5. On MJM compute node, start pympi run:

> mpirun.lsf pyMPI

8.1.2 VTK: MJM, JVN, Humvee, and Sketch

This section provides a step-by-step procedure outlining how to test VTK on MJM, JVN,
Humvee, and Sketch while working from a Redhat Linux army.mil machine at APG. The
following steps will reference MJM; however, JVN, Humvee, or Sketch can be substituted:

1. Login to HPC machine.

2. ssh to a MJM login node:

> ssh -Y mjm-l1

3. On mjm-l1, request interactive compute nodes:

> bsub -Is -n 2 -x -a openmpi -m mjm -W 00:30 -q interactive

tcsh

4. On MJM compute node, load the CSE vtk module:

> module load cse/vtk/latest

5. On MJM compute node, start VTK run.

8.1.3 ParaView: MJM, JVN, and Humvee

This section provides a step-by-step procedure outlining how to test ParaView on MJM, JVN,
and Humvee while working from a Redhat Linux army.mil machine at APG. The following
steps will reference MJM; however, JVN or HUMVEE can be substituted:

1. On a 64-bit Linux workstation, run the ParaView client:

 a. Load the CSE paraview module:

 20

> module load cse/paraview/latest

 b. Start ParaView:

>paraview -s=manual

2. Login to HPC machine.

3. ssh to a MJM login node:

> ssh -Y mjm-l1

4. On mjm-l1, request interactive compute nodes:

> bsub -Is -n 2 -x -a openmpi -m mjm -W 00:30 -q interactive

tcsh

5. On MJM compute node, load the CSE ParaView module:

> module load cse/paraview/latest

6. On MJM compute node, start ParaView server:

> mpirun.lsf pvserver --use-offscreen-rendering -rc

-ch=<clienthostname>

7. Now conduct the test, e.g., Compositing, CutFilter, ProbeFilter ...

8.1.4 ParaView: Sketch

This section provides a step-by-step procedure outlining how to test ParaView on Sketch while
working from a Redhat Linux army.mil machine at APG. To run ParaView on Sketch:

1. On a 64-bit Linux workstation (e.g., squirt4), run the ParaView client:

 a. Load the CSE ParaView module:

> module load cse/paraview/latest

 b. Start ParaView:

>paraview -s=manual

2. Login to HPC machine.

3. ssh to a Sketch login node:

> ssh -Y sketch-l1

4. On sketch-l1, request interactive compute nodes:

 21

> bsub -n 2 -Ip -x -W 0:30 -a openmpi -R ``span[ptile=1]''

tcsh

5. Set DISPLAY environment variable to 0.0:

> setenv DISPLAY :0.0

6. On Sketch compute node, load the CSE ParaView module:

> module load cse/paraview/latest

7. On Sketch compute node, start ParaView server:

> mpirun.lsf pvserver --use-offscreen-rendering -rc

-ch=<clienthostname>

8. Now conduct the test, e.g., Compositing, CutFilter, ProbeFilter ...

Note the ParaView-3.2.1 client on Sketch occasionally has issues terminating the openmpi
associated with pvserver. In these cases, it is required to kill (using bkill command, see section
10.3) the LSF job corresponding to pvserver.

8.2 General Testing Errors

8.2.1 TK Testing Error and Workaround

It has been found that TK tends to produces more testing errors when using KDE, and in some
instances, the test suite freezes when reaching the TK select test. These issues have not been
seen when using Gnome.

8.2.2 VTK Testing Error and Workaround

VTK test hangs on test 791 Testing DistributedData-image. One will need to kill test 791 by:

1. Hit q-key, then the return-key in the terminal running the test.

2. Run top command in a different shell:

> top

3. While top is running, hit the k-key.

4. Then enter the PID associated with mpirun and hit return-key.

5. Then enter 9 and hit return-key.

8.2.3 ParaView Testing Error and Workaround

ParaView test hangs on test 84 Testing TestMetaIO. One will need to y kill test 84 by:

1. Run top command in a different shell:

 22

> top

2. While top is running, hit the k-key.

3. Then enter the PID associated with IOCxxTests and hit return-key.

4. Then enter 9 and hit return-key.

Also note the ParaView-3.2.1 client on Sketch occasionally has issues terminating the openmpi
associated with pvserver. In these cases, it is required to kill (using bkill command, see section
10.3) the bsub call corresponding to pvserver.

9. Notes on Distributing CSE

In order to acquire local optimizations and performance enhancements (compilers, hardware-
specific MPI installations, etc.), CSE is built and released on each HPC system. Desktop
distributions that support 64-bit RedHat4 and RedHat5 systems are also provided. These
distributions are available via rdist from patrick.arl.army.mil. The RH4 distribution is installed
in patrick:/usr/cta/CSE, and the RH5 installation is installed in patrick:/rhel5/usr/cta/CSE.

9.1 Installing Software on the rdist Master System (patrick)

Any software being pushed to patrick (using the methods defined in section 6.3) needs to be
installed in the proper location. Software being pushed from the RH5 build master should be
installed in the /rhel5/usr/cta/CSE tree, and software built on the RH4 master should go into
/usr/cta/CSE on patrick. Any module files automatically created during the CSE build process
should not need to be modified in the RH5 environment. Once the software is rdist’d to RH5
workstation, the /rhel5/usr/cta/CSE directory will appear as /usr/cta/CSE to the end user;
therefore, no further changes are required.

9.2 Rdist from patrick

Setting up rdist on patrick is a two-step process. Prior to attempting an rdist, a system
administrator on patrick.arl.army.mil needs to allow the desktop workstation to rdist the
package(s) by modifying the proper files. The hostnames need to be added to the following files
on RH4 client workstation:

patrick:~rhel4/distfile and ~rhel4/.rhosts

And on RH5 client workstation:

patrick:~rhel5/distfile and ~rhel5/.rhosts

 23

9.2.1 Release Distribution Only

On the client workstation, the system administrator issues the following command (as “root”) to
perform the rdist:

RHEL4 SYSTEM> rdist.arl -C rhel4@patrick.arl.army.mil cse

or

RHEL5 SYSTEM> rdist.arl -C rhel5@patrick.arl.army.mil cse

9.2.2 Release and Beta Distribution

On the client workstation, the system administrator issues the following command (as “root”) to
perform the rdist:

RHEL4 SYSTEM> rdist.arl -C rhel4@patrick.arl.army.mil cse-all

or

RHEL5 SYSTEM> rdist.arl -C rhel5@patrick.arl.army.mil cse-all

9.2.3 Rdist Packages Currently Available

• cse: all packages in “release” directory and all module files.

• cse-all: all packages in “release” and “beta” directories and all module files.

• visit: visit release and associated module files.

• paraview: ParaView production release and associated module files.

• paraview_beta: ParaView from “release” & “beta” areas and associated module files.

10. Notes on Extending CSE

10.1 Integrating a Personal Package to CSE

To integrate a personal CSE package:

1. Obtain a copy of CSE as outlined in section 2 or build CSE from source as described in
section 4.1.

2. Create a module file (myModule) that interfaces the personal package with CSE (see
section 9.2.1). Note that myModule is an arbitrary name.

3. Set the module file path myModulePath (path where myModule lives):

> module use myModulePath

 24

4. Load your module:

> module load myModule

10.2 Creating a CSE Module File

To illustrate how to create a CSE module file, consider the following file for the CSE release
module SIP, with key components for creating a release CSE-compliant module file:

• Lines 0–16: required in every module file.

• Line 17: replace SIP with the name of personal package.

• Line 18: replace 4.7.4 with the version of personal package.

• Line 19: replace $CSE_HOME/Release/$name-$version with the path to your personal
package.

• Lines 20–66: required in every module file.

• Line 67: add all conflicts.

• Line 69: add commands specific to the personal package.

• Lines 70–74: required in every module file.

Note that a module file may vary from package to package and is slightly different for beta
packages.

10.3 Integration Example—IceSpy

IceSpy is an example of locally developed software that was not initially developed within CSE
but has been fully integrated into the environment, making it easier for the developers to
maintain and extend, and greatly simplifies initialization and execution for the end user.

10.3.1 IceSpy Description

IceSpy is software that integrates the Python scripting language and the Xdmf data model with
the widely used shock physics code CTH. This unique collection of components allows the end
user to access the data calculated by CTH for analysis and visualization, without being hindered
by the limited set of tools provided with the CTH package. Several Python-based scripts are
provided to extract and convert data calculated in CTH to Xdmf, enabling the end user to analyze
the results in a number of commercial and open source packages.

10.3.2 Pre-CSE Development and Execution Challenges

IceSpy is an integration of Python, Xdmf, and CTH. This combination presents challenges for
both the developer and end user. IceSpy was developed under ICE, a predecessor of CSE.
Environment configuration in ICE was handled by a complex setup script that attempted to

 25

provide a common initialization source for multiple computer platforms. This in itself was
difficult to maintain and, as a result, was a source of frustration for the developer and end user.
These configuration issues were compounded by the fact that CTH and the rest of ICE were not
built with the same compilers. CTH is built with the Portland Group C and Fortran compilers,
with their associated version of MPI, and ICE was built using gcc linked against its version of
MPI.

10.3.3 Using the CSE Build Process for IceSpy

To integrate the IceSpy build into CSE, the IceSpy source was copied into the CSE directory
structure in /CSE/Packages/Experimental/IceSpy/81. The directory name /81 corresponds with
the CTH version that IceSpy will be linked to. As described in section 10.2, the /81 directory
must have a SConscript file that will be called by the main CSE SConstruct at build time. The
significant elements of the following script are found in lines 25–29, where the necessary CTH
environment variables are set for the creating the cth_beta module, and lines 45–47, where the
required modules for building are loaded. Note that this contains the just-created cth_beta
module. The ability to create and load modules at build time saves a significant amount of
effort, eliminating the need for the developer to continually set paths individually prior to the
build process. When the build and install processes are complete, the end user will use these
modules to set up the appropriate environment for running the package.

1 #!/usr/bin/env python
2 import os
3 import sys
4 from Tools.scons.ice import *
5
6 Import('env')
7 myenv = env.Copy()
8
9
10
11 # configure, create and install cth module
12 #--
13 pkg_install_name = 'cth_beta'
14 pkg_install_version = '8.1'
15 install_name = pkg_install_name + '-' + pkg_install_version
16 pkg_name = pkg_install_name + '-' + pkg_install_version
17 pkg_tar = pkg_name + '.tgz'
18 release = 0
19 latest = 0
20
21 myenv.Replace(BUILDBIN = os.path.join(env['BUILDBETABIN'],
install_name.lower()))
22 pkg = ice_buildext.Package(pkg_name, pkg_tar, myenv)
23
24
25 extras = ['setenv CTHPATH /usr/cta/unsupported/CTH/CTH_8.1']
26 extras += ['setenv CTHBIN /usr/cta/unsupported/CTH/CTH_8.1/bin']
27 extras += ['setenv CTH_HOME /usr/cta/unsupported/CTH/CTH_8.1']
28 extras += ['prepend-path PATH /usr/cta/unsupported/CTH/CTH_8.1/bin']
29

 26

30 pkg.ExternalModuleInstall(pkg_install_name.lower(), pkg_install_version, env[
'MODBETATOOLDIR'],extr as, release, latest)
31
32
33
34 # configure, create and install IceSpy
35 #---
36
37 pkg_install_name = 'IceSpy_beta'
38 pkg_install_version = '81'
39 install_name = pkg_install_name + '-' + pkg_install_version
40 pkg_name = pkg_install_name + '-' + pkg_install_version
41 pkg_tar = pkg_name + '.tgz'
42 release = 0
43 latest = 0
44
45 modules = [('gcc','sys'), ('python','required'), ('openmpi', 'required'),
46 ('vtk_beta/05.27.08','required'),('xdmf_beta/02.10.09','required'),
47 ('cth_beta/8.1','required')]
48
49 myenv.Replace(BUILDBIN = os.path.join(env['BUILDBETABIN'], install_name.lower()
))
50 pkg = ice_buildext.Package(pkg_name, pkg_tar, myenv)
51
52
53 if not os.path.exists(myenv['BUILDBIN']) or myenv['install']:
54 depend_mods = pkg.LoadModules(modules)
55 pkg.Tar(pkg_name)
56 pkg.UnTar()
57 pkg.RemoveFile(pkg_tar, './')
58
59 # configure and build
60 cmd = 'cd ' + pkg.pkg_src_dir + '/libsrc; scons install'
61 cmd += ' pgi=/opt/compiler/pgi/linux86-64/8.0'
62 cmd += ' cth='+myenv['ENV']['CTHPATH']
63 cmd += ' mpi='+myenv['ENV']['MPI_HOME']
64 cmd += ' pythonroot=' + myenv['ENV']['CSE_PYTHON_HOME']
65 cmd += ' xdmfroot=' + myenv['ENV']['CSE_XDMF_BETA_HOME']
66 cmd += ' vtkroot=' + myenv['ENV']['CSE_VTK_BETA_HOME']
67 cmd += ' hdf5root=' + myenv['ENV']['CSE_HDF5_HOME']
68 cmd += ' release=' + pkg.prefix
69 pkg.Run(cmd)
70
71 # configure and install
72 version = sys.version_info
73 PythonVersion = "%d.%d" % (version[0], version[1])
74
75 # change group to cth
76 cmd = 'chgrp -R cth ' + pkg.prefix
77 pkg.Run(cmd)
78
79 extras = []
80 extras += depend_mods
81 extras += ['prepend-path PYTHONPATH $prefix/lib/python'+PythonVersion]
82 extras += ['prepend-path PYTHONPATH
$prefix/lib/python'+PythonVersion+'/lib-dynload']
83 pkg.ModuleInstall(pkg_install_name.lower(), pkg_install_version, env[
'MODBETATOOLDIR'],
84 extras, release, latest)
85

 27

86 if myenv['test'] == 'no':
87 myenv['test'] = 'yes'
88
89 if myenv['test'] == 'yes':
90 pkg.MakeTest(pkg_name)
91

10.3.4 Adding IceSpy to the Main SConstruct

The code used to add IceSpy to the main SConstruct file at the base of the build file structure is
slightly different than what is described in section 10.2.2.2. Because IceSpy is still a work in
progress and its integration into CSE is not complete, it is listed in the main SConstruct as an
option. Building IceSpy requires the developer to specifically request it on the bootstrap
command line using “build_icespy=1.”

The code added to the SConstruct is in the section for Options beginning with the following:

opts = Options("ext_pkg.conf")

This line adds IceSpy to the list of potential options available for building:

opts.Add(BoolOption("build_icespy", "Build a local copy of icespy", 0))

Adding the following code after defining the list of Release and Experimental Packages will
evaluate the Boolean and add IceSpy to the list of Experimental packages, if requested.

if env['build_icespy']:
 Experimental_Packages += [('IceSpy-beta',
'Packages/Experimental/IceSpy/81/SConscript')]

Finally, the actual build command will look like the following:

./bootstrap –a build_icespy=1

10.3.5 Running and Testing IceSpy

When the build process has been successfully completed, the developer or end user is able to
access IceSpy by loading the appropriate modules. This example uses a build directory structure
that is not part of the main CSE build typically found in /usr/cta/CSE, hence the module use
command; however, the modules to be loaded would be very similar.

module use /usr/people/username/CSE/02.10.09/build/COTS (points to a local build of
CSE)
module load cseinit
module load cse-build
module load cse-beta
module load cse-tools-beta
module load cse/icespy_beta/81

Upon final implementation, loading the cse/icespy_beta/81 module file will load the correct
compilers, MPI version, CTH version, and Python paths and eliminate the usual requirement to
troubleshoot conflicts and path errors, reducing end-user frustration and the need for developer
intervention.

 28

10.4 Integrating a New CSE Package

CSE can be extended by integrating new release or experimental packages. To add a new CSE
package, one needs to consider three points:

1. Create directory structure for custom package, then store source and configuration files in
the new directory.

2. Configuration files for scons:

 a. Generation of an SConscript file.

 b. Update main SConstruct to point to new SConscript file.

3. Write patch if needed.

These points are discussed in detail in the next sections and should be referenced when
integrating a new CSE package.

10.4.1 Create CSE Source and Layout Structure

The directory structure that defines how new packages should be integrated is illustrated in
figure 2. The CSE source directory is the same for the release or experimental packages.

The CSE source directory has two valid tree structures that are dependent on the number of
versions provided per package. If only one version of a package is provided by CSE, then the
layout in figure 2a or b can be used. If more than one version of a package is provide by CSE,
then the layout in figure 2b must be used. Once the directory structure has been created, add the
SConscript file src.tar.gz and the patch file if needed.

10.4.2 Generate Configuration Files for Scons

10.4.2.1 Generate a SConscript<sub:Generate-a-SConscript>. To illustrate how to create a
SConscript file, consider the following SConscript file for the CSE release module Python with
key components for creating a release CSE-compliant SConscript file:

• Lines 0–3: required in every SConscript file.

• Line 4: replace Python with the name of personal package.

• Line 5: replace 2.5.1 with the version of personal package.

• Lines 6–8: required in every SConscript file.

• Line 9: set release to 1 if the package is a release package; otherwise, set release to 0 (beta
package).

• Line 10: set latest to 1 if the package is the latest version of the release package; otherwise,
set release to 0 (all beta package require that release be set to 0).

 29

Figure 2. The CSE source package layout. (A) An overview of the general CSE package layout directory
structure. (B) The directory layout corresponding to packages that have multiple versions.

• Line 11: add the list of dependent modules required by the package. To successfully

create a module for package _{\text{n}}, all dependent module packages must be
included in the module = [(‘package_{\text{x}}’,’sys’),('package_
{\text{y}} ‘,’build’),(‘package_{\text{z}}’,’required’)] list.

 sys: The sys flag indicates that a package _{\text{x}}module load will be queried. If
package _{\text{x}}is loaded, then package _{\text{x}}is considered a dependent
module.

 build: The build flag indicates that package _{\text{y}} must be loaded to build
and package _{\text{y}}is not a runtime dependency. If the package
_{\text{y}} is not loaded, an attempt to load a CSE version of package
_{\text{y}} is made. If package _{\text{y}} fails to load, the build stops with
an error message indicating that it was unable to load package _{\text{y}}.

 30

 required: The required flag indicates that package _{\text{z}} must be loaded to build
and package _{\text{z}} is a runtime dependency.

• Lines 12–21: required in every SConscript file.

• Line 22: add this line if a patch must be applied.

• Lines 23–25: add the correct build and install routines; recommend reviewing other
SConscript files for examples.

• Lines 26–30: add any extra environment commands that are specific to the packages.

• Lines 31–37: required in every SConscript file.

Note that a SConscript file may vary from package to package and is slightly different for beta
packages.

10.4.2.2 Update Main SConstruct. To make the CSE build aware of a custom package, add the
following line to the main SConstruct (found in the CSE root source directory):

Release_Packages

+=[('myPackage','Packages/Release/myPackage/SConscript')]

or for beta packages:

Experimental_Packages +=[(
‘myPackage’,’Packages/Experimental/myPackage/SConscript’)].
The location of this additional line will become apparent when viewing the main CSE
SConstruct file.

10.4.3 Patching a CSE Package

In some cases, it is required to patch a CSE file. To patch a CSE file:

1. Create a mod_src directory in the CSE build directory. The CSE build directory is
generated after running a CSE build.

2. Copy the package modified src directory into the mod_src directory.

3. Remove the package src directory.

4. Modify SConscript line 20 of Section [sub:Generate-a-SConscript] to reflect the file or files
that have been changed; recommend reviewing other SConscript files for examples.

5. Run a CSE build for the specified package to create a patch:

> ./bootstrap -a mypackage diff=1

6. Remove the package src directory.

 31

7. Run a final CSE build of package:

> ./bootstrap -a mypackage

11. CSE Helpful References

11.1 Subversion Repository

The CSE repository is stored on patrick using the Subversion (SVN) version control system.
Additional information on Subversion can be found at http://svnbook.red-bean.com/.

11.1.1 Getting CSE Source

1. Load the CSE svn module:

> module load cse-tools

> module load cse/subversion

2. Get the latest version of CSE from SVN repository:

> svn co

svn+ssh://<username>@patrick/data/Repository/CSE/trunk/CSE SVN_CSE

(Note: The name of the directory SVN_CSE is arbitrary. If SVN_CSE does not exist, then one
will be created. Also, in some cases, one may have to use patrick@arl.army.mil instead of only
patrick.)

11.1.2 Export a Clean Directory Tree

To export a clean directory tree from the working copy:

1. Load the CSE svn module.

2. Go to SVN root directory or subdirectory.

3. Export a copy:

> svn export ./ DirName_CSE

(Note: The name of the directory DirName_CSE is arbitrary.)

11.1.3 Updating CSE Source

11.1.3.1 Update a File That Already Exist in CSE “Subversion” Repository.

1. Load the CSE subversion module.

2. Go to SVN root directory or subdirectory.

 32

3. To update a file already in CSE SVN repository:

> svn update filename

(Note: This will mark the file as updated.)

4. Commit your changes:

> svn commit filename

(Note: This will open a text editor for you to record your comments. Save and exit editor to
finish commit process.)

11.1.3.2 Add a New File to CSE SVN Repository

1. Load the CSE svn module.

2. Go to SVN root directory or subdirectory.

3. To add a file to CSE SVN repository:

> svn add filename

 (Note: This will mark the file as updated.)

4. Commit your changes:

> svn commit filename

(Note: This will open a text editor for you to record your comments. Save and exit editor to
finish commit process.)

11.1.3.3 Update Your CSE SVN Files

1. Load the CSE svn module.

2. Go to SVN root directory or subdirectory.

3. To update your SVN files in the current directory and subdirectories:

> svn update

11.2 Module Commands

• module avail: lists all available modules.

• module list: lists the all modules currently loaded.

• module load module_name: loads the module module_name.

• module add module_name: loads the module module_name.

• module unload module_name: unloads the module module_name.

 33

• module rm module_name: unloads the module module_name.

11.3 LSF Commands

• bjobs: displays information about jobs.

• bkill: sends signals to kill jobs.

• bsub: submits a batch job to LSF.

 34

Bibliography

Clarke, J. A.; Namburu, R. R. A Distributed Computing Environment for Interdisciplinary
Applications. Concurrency and Computation: Practice and Experience 2002 14, 1161–
1174.

Furlani, J. L. Modules: Providing a Flexible User Environment. In Proceedings of the Fifth
Large Installation Systems Administration Conference (LISA V), San Diego, CA,
30 September–3 October 1991.

Furlani, J. L.; Osel, P. W. Abstract Yourself With Modules, In LISA 96: Proceedings of the
10th USENIX Conference on System Administration, Berkeley, CA, 29 September–04
October 1996.

Kitware. The ParaView Guide: A Parallel Visualization Application; Clifton Park, NY, 2008.

Python. See URL: http://www.python.org.

Schroeder, W.; Martin, K.; Lorensen, B. Visualization Toolkit: An Object-Oriented Approach to
3D Graphics, 4th ed.; Kitware: Clifton Park, NY, 2006.

NO. OF
COPIES ORGANIZATION

 35

 1 DEFENSE TECHNICAL
 (PDF INFORMATION CTR
 only) DTIC OCA
 8725 JOHN J KINGMAN RD
 STE 0944
 FORT BELVOIR VA 22060-6218

 1 DIRECTOR
 US ARMY RESEARCH LAB
 IMNE ALC HRR
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 1 DIRECTOR
 US ARMY RESEARCH LAB
 RDRL CIM L
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 1 DIRECTOR
 US ARMY RESEARCH LAB
 RDRL CIM P
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

ABERDEEN PROVING GROUND

 1 DIR USARL
 RDRL CIM G (BLDG 4600)

 36

INTENTIONALLY LEFT BLANK.

